Institute for Geophysics

Understanding the Earth and other planets to solve key problems that affect us all. The world needs geophysicists!

  • About
    • Institutional History
    • Mission & Science
    • Code of Conduct
    • Job Listings
    • Postdoctoral Fellowships
    • Outreach
    • Contact
    • UT Austin Science Olympiad
  • News
    • Media Releases
    • Geophysics Blog
    • In the News
    • Staff and Student Awards
    • Media Contacts
  • Research
    • Climate
    • Polar and Planetary
    • Energy
    • Marine Geosciences, Seismology and Tectonics
  • Staff
    • Research Scientists
    • Postdoctoral Fellows
    • Administrative Staff
    • Scientific Support Staff
    • Research Affiliates
    • Find an Expert
  • Students
    • Current Students
    • Recent Graduates
    • Meet the UTIG Student
    • Prospective Students
    • UT Marine Geology & Geophysics Field Course
  • Seminars
  • COVID-19
    • JSG Coronavirus Updates
    • Give to UT’s Student Emergency Fund

January 24, 2022

Hope for Present-Day Martian Groundwater Dries Up

Satellite image of Mars' ice covered south pole
A view of Mars’ south pole. Research led by The University of Texas at Austin found that a 2018 discovery of liquid water under the Red Planet’s south polar cap is most likely just radar reflecting from volcanic rock. Credit: ESA/DLR/FU Berlin

Liquid water previously detected under Mars’ ice-covered south pole is probably just a dusty mirage, according to a new study of the red planet led by researchers at The University of Texas at Austin.

Scientists in 2018 had thought they were looking at liquid water when they saw bright radar reflections under the polar cap. However, the new study published Jan. 24 in the journal Geophysical Research Letters found that the reflections matched those of volcanic plains found all over the red planet’s surface.

Watch a preview of the research.

The researchers think their conclusion — volcanic rock buried under ice — is a more plausible explanation for the 2018 discovery, which was already in question after scientists calculated the unlikely conditions needed to keep water in a liquid state at Mars’ cold, arid south pole.

“For water to be sustained this close to the surface, you need both a very salty environment and a strong, locally generated heat source, but that doesn’t match what we know of this region,” said the study’s lead author, Cyril Grima, a planetary scientist at the University of Texas Institute for Geophysics (UTIG).

The south polar mirage dissolved when Grima added an imaginary global ice sheet across a radar map of Mars. The imaginary ice showed how Mars’ terrains would appear when looked at through a mile of ice, allowing scientists to compare features across the entire planet with those under the polar cap.

Grima noticed bright reflections, just like those seen in the south pole but scattered across all latitudes. In as many as could be confirmed, they matched the location of volcanic plains.

On Earth, iron-rich lava flows can leave behind rocks that reflect radar in a similar way. Other possibilities include mineral deposits in dried riverbeds. Either way, Grima said, figuring out what they are could answer important questions about Mars’ history.

Rotating Mars globe. The surface is white and rust red streaks
A radar map of Mars as seen through a mile of ice. UT Austin planetary scientist, Cyril Grima, built a computer model to cover the Red Planet in ice and observed how it changed the radar data. This caused volcanic plains (seen in red) to reflect radar in a manner that resembled liquid water. The finding challenges a 2018 study that appeared to find liquid water under Mars’ south polar cap. Credit: Cyril Grima

Although there may not be liquid water trapped under the southern polar cap, there is plenty of water ice on Mars, including in the thick polar caps. In fact, the new study hints at Mars’ wetter past.

Isaac Smith, a Mars geophysicist at York University, believes the bright radar signatures are a kind of clay made when rock erodes in water. In 2021, Smith, who was not part of either study, found that Earth-based clays reflected radar brightly, just like the bright spots in the 2018 south pole study.

“I think the beauty of Grima’s finding is that while it knocks down the idea there might be liquid water under the planet’s south pole today, it also gives us really precise places to go look for evidence of ancient lakes and riverbeds and test hypotheses about the wider drying out of Mars’ climate over billions of years,” he said.

Grima’s map is based on three years of data from MARSIS, a radar instrument launched in 2005 aboard the European Space Agency’s Mars Express that has accumulated tremendous amounts of information about Mars. Grima and co-author Jérémie Mouginot, a research scientist at the Institute of Environmental Geosciences in Grenoble, France, plan to dig further into the data to see what else MARSIS can turn up about Mars.

For Smith, the study is a sobering lesson on the scientific process that is as relevant to Earth as it is to Mars.

“Science isn’t foolproof on the first try,” said Smith, who is an alumnus of the Jackson School of Geosciences at UT Austin. “That’s especially true in planetary science where we’re looking at places no one’s ever visited and relying on instruments that sense everything remotely.”

Grima and Smith are now working on proposed missions to find water on Mars with radar, both as a resource for future human landing sites and to search for signs of past life.

The current study was partially funded by NASA and CNES, the French national space agency. The Institute of Environmental Geosciences (Institut des Géosciences de l’Environnement) is a joint research unit of the French National Centre for Scientific Research, Université Grenoble Alpes and other institutions in France. UTIG is a research unit of the UT Jackson School of Geosciences.

This story is published jointly with the American Geophysical Union.

For more information, contact:
Constantino Panagopulos, University of Texas Institute for Geophysics, 512-574-7376
Monica Kortsha, Jackson School of Geosciences, 512-471-2241
Anton Caputo, Jackson School of Geosciences, 512-232-9623

Filed Under: homepage-news, Media Releases, News Tagged With: Cyril Grima, Mars, Mars Express, MARSIS, planetary habitability, Planetary Sciences, radar, water on Mars

University of Texas Institute for Geophysics

J.J. Pickle Research Campus,
Building 196
10100 Burnet Road (R2200)
Austin, TX 78758-4445

Phone: 512-471-6156
Fax: 512-471-2370

Driving Directions

Connect with us

  • Facebook
  • Instagram
  • Twitter
  • YouTube

QUESTIONS?

frontdesk@ig.utexas.edu
or contact the webmaster
social@ig.utexas.edu

RESOURCES

Seismograms

Publications Database

Texas ScholarWorks

Travel Guide for UTIG Employees

Google Scholar

Facilities

HELPFUL LINKS

Directory (EID)

Job Listings

UTIG Fact Sheet

UTIG Brochure

UTIG Science Vision Plan

UTIG Newsletter

UTIG Code of Conduct

Commitment to Diversity, Equity, and Inclusion

OUR PARTNERS

Bureau of Economic Geology

Department of Geological Sciences

Center for Planetary Systems Habitability

Visit the Jackson School's website

Copyright © 2022 University of Texas Institute for Geophysics
The University of Texas at Austin · Web Privacy Policy · Web Accessibility Policy