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Abstract
In the summer and fall of 2023, the University of Texas (UT) Deepwater Hydrate Coring Expedition (UT-GOM2-2) 
drilled, cored, made downhole measurements, and analyzed samples from the seafloor to the base of the gas 
hydrate stability zone at Site H, in the Walker Ridge Protracted Area Block 313 (Site H, WR313), in the Terrebonne 
Basin, deepwater Gulf of America (Gulf of Mexico). 

Analyses of data and samples from the expedition will inform biological, geochemical, and geomechanical 
models to constrain the role of gas hydrates in the carbon cycle and the potential for gas hydrates as an energy 
resource. Pressure and conventional cores were collected continuously to a depth of 155.1 meters below the 
seafloor (mbsf). At deeper depths, cores were taken periodically from hydrate-bearing sands and their bounding 
muds to a total depth of 861.3 mbsf. 162.6 m of conventional core and 54.8 m of pressure core were recovered. 

Twelve temperature measurements were made between 27.1 and 144.5 mbsf to determine the geothermal 
gradient. At the seafloor, more than 4 m of sandy silt of unknown origin was encountered. Beneath this sand, to 
a depth of about 200 mbsf, the section was composed of interbedded mud and biogenic carbonate ooze. The 
ooze correlated to low density and high porosity intervals observed in the previously acquired logging while 
drilling (LWD) data and as measured. These ooze intervals also correspond to lighter sediment color, increased 
Ca content based on X-ray florescence (XRF) core scanning, and increased calcareous nannofossil abundance. 
Calcareous nannofossil biostratigraphy constrains the entire record to the Pleistocene (< 0.91 million years), 

The Ohio State University professor Ann E. Cook talks science with The University of Texas at Austin student Ethan Petrou on the Helix 
Q4000 helipad. Photo credit: Peter B. Flemings 
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with a pronounced increase in sedimentation 
rate with depth. Below 200 mbsf, the section was 
predominantly composed of mud with two thicker, 
hydrate-bearing coarse-grained intervals, which are 
commonly known as the Blue and Orange sands. 

The dissolved gas concentration was quantified 
from pressure cores. In the shallow section, 
dissolved methane concentration increased 
below the sulfate-methane transition zone (SMTZ) 
and reaches saturation (the limit of solubility for 
methane) at 147 mbsf. Gas expansion was very 
common in conventional and depressurized pressure 
(conventionalized) cores below the SMTZ. 

At deeper depths, the methane concentration within 
muds bounding the Blue and Orange reservoirs 
was generally found to be less than saturation. The 
dissolved and hydrate gas composition is consistent 
with a microbial source, containing greater than 
99.99% methane and only trace concentrations of 
ethane, propane, and butane. The methane to ethane 
ratio (C1/C2) and the methane to ethane plus propane 
(C1/(C2+C3)) decrease with depth down to at least 678 
mbsf, mainly driven by the increase in ethane with 
depth. It is unclear if this trend continues through the 
Orange sand interval. The δ13C isotopic signature of 
methane ranges between -69.9 and -78.5 ‰ relative 
to the Vienna Pee Dee Belemnite (VPDB) standard. 

Pressure core recovery in sandy intervals was poor. 
However, pressure core logs of the Orange sand show 
intervals of low density and high velocity, which are 
indicative of high hydrate saturation. One pressure 
core was degassed and the average hydrate saturation 
in the core was determined to be 24%. One core from 
within the Orange sand was composed of interbedded 
graded sandy silt and mud. The sandy silts from this 
core are composed of mainly quartz and feldspar 
with some lithics. Most of the recovered pressure core 
samples are maintained at near in-situ pressure and 
temperature (within the hydrate stability field) at the 
University of Texas Pressure Core Center awaiting 
analysis. 

In the shallow section, samples will be used to 
determine the flux of organic carbon through the 

basin system, find the rate at which that carbon was 
consumed, and understand the microbial population 
responsible for these processes. In the deeper section, 
samples from in and around the hydrate reservoirs 
will be used to determine the petrophysical properties 
of the reservoir and bounding seals in these systems. 

https://doi.org/10.5281/zenodo.13971076
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Introduction
In the summer and fall of 2023, the University of Texas (UT) Deepwater Hydrate Coring Expedition (UT-GOM2-2) 
drilled, cored, made downhole measurements, and analyzed samples from the seafloor to the base of the gas 
hydrate stability zone at Site H in the Walker Ridge Protracted Area Block 313 (Site H, WR313) in the Terrebonne 
basin, deepwater Gulf of America (Gulf of Mexico), herein the Gulf. 

This was the primary expedition of the Deepwater Methane Hydrate Characterization & Scientific Assessment 
project (DE-FE0023919). This project is funded by the United States Department of Energy (DOE), National 
Energy Technology Laboratory (NETL), and advised by the United States Geological Survey (USGS) and the 
Bureau of Ocean Energy Management (BOEM). We successfully sampled and analyzed the physical, chemical, 
and biological properties of hydrate-bearing reservoirs, their bounding strata, and the overlying sedimentary 
section. Completed and ongoing analyses of data and samples from the expedition will inform biological, 
geochemical, and geomechanical models to constrain the role of gas hydrates in the carbon cycle and the 
potential for gas hydrates as an energy resource.

The program planned to recover samples from the first few hundred meters beneath the seafloor to illuminate 
the microbial factory that is the primary source of the methane found in gas hydrates in the deep oceans. We 
sought to determine the flux of organic carbon through the basin system, find the rate at which that carbon 
was consumed, and methane was produced, and understand the microbial population responsible for these 
processes. We also sampled deeper, hydrate-bearing reservoirs, and their bounding non-reservoir units to 
interpret the petrophysical properties of these reservoirs and illuminate the mechanisms by which they formed. 

We first summarize the underlying scientific questions that drove the program. We then provide a geological 
overview of the study region. We then integrate our understanding of the geologic framework of the study area 
with the scientific questions to be addressed to develop the expedition operational plan. We then summarize 
the execution of the drilling and core analysis program. This includes an overview of the execution, the drilling 
operations, and a summary of scientific results. 

Members of the science party arrive via helicopter on site at Walker Ridge Block 313. Photo credit: Geotek Ltd. 

https://doi.org/10.5281/zenodo.13971076
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Scientific motivation
Approximately 10,000 billion tons of mobile carbon (in land plants, peat, soil, organic and inorganic carbon 
dissolved in the ocean, and fossil fuels) constantly cycle through the solid Earth, the ocean, and the atmosphere 
(Isson et al., 2020; You et al., 2019). Of this carbon, 5-22% is trapped in gas hydrate, an ice-like substance 
composed mostly of methane and water (Boswell and Collett, 2011; Milkov, 2004; Ruppel and Kessler, 2017; 
Sloan and Koh, 2007). 

Most of this massive carbon reservoir lies in continental marine margin sediments within a layer that extends 
downward from the seafloor and can reach thicknesses of ~1,000 m (3,280 ft.) (Boswell and Collett, 2011; 
Kvenvolden, 2012). This layer interacts with the Earth’s ocean and, perhaps, the atmosphere (Ruppel and 
Kessler, 2017). This dynamic carbon reservoir is a potential energy resource (Boswell and Collett, 2011), a 
potential source of geohazards (Kayen and Lee, 1991; Mienert et al., 2005), and a potential driver for climate 
change (Kennett et al., 2000; Ruppel and Kessler, 2017).

Gas hydrates, the global carbon cycle, and the microbial factory
The atmosphere currently contains only 8% (~800 billion tons) of the total mobile carbon (Schuur et al., 2008). 
Thus, the hydrate carbon reservoir is of the same scale as that of the atmosphere. Furthermore, methane is a 
greenhouse gas with 84 times the radiative forcing of carbon dioxide (CO2) over a 20-year timeframe (Ruppel 
and Kessler, 2017), any leakage of methane directly into the atmosphere can disproportionately impact climate. 
However, current evidence suggests that methane seeping from the seafloor within the hydrate stability zone 
is unlikely to pass through the ocean to reach the atmosphere (Ruppel and Kessler, 2017). Instead, in many 
locations above hydrate deposits, methane vents into the overlying ocean and it is commonly oxidized, resulting 
in potential ocean acidification (Biastoch et al., 2011; Boudreau et al., 2015). In addition, methane flowing 

Geotek Ltd. team members onboard the Q4000. team Photo credit: Peter B. Flemings 
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upward within seafloor sediments is largely oxidized 
within near-seafloor sediments, leading to a flux of 
dissolved carbon into the ocean (Reeburgh, 2007). 
However, large-scale hydrate dissociation events 
and the consequent methane emissions have been 
proposed to cause large climate perturbation in the 
geologic past (Dickens, 2003; Kennett et al., 2000; 
Ruppel and Kessler, 2017). However, the workings 
of this sedimentary carbon recycling factory and the 
role played by gas hydrates are not yet completely 
understood. A detailed sampling program of the 
marine water column and the underlying subsea 
sedimentary section has the potential to better 
illuminate these fluxes in the marine hydrate system.

At the root of this system is the microbial factory 
that ultimately produces methane (Claypool and 
Kaplan, 1974; Kayen and Lee, 1991; Kvenvolden, 
1988; Mienert et al., 2005). Wei et al. (2024) review 
the complex process by which primary organic carbon 
in marine sediments is broken down by a sequence of 
microbially-mediated reactions to generate dissolved 
organic carbon of decreasing molecular weights, 
which are eventually utilized in terminal respiratory 
processes such as methanogenesis. 

We are only beginning to explore the microbial 
communities that are present, and the complex 
interactions and kinetics that control this process. 
A detailed sampling program of geochemistry and 
microbiology as a function of depth of burial has the 
potential to further illuminate these processes.

Gas hydrates and energy
The large amount of natural gas stored in gas hydrates 
makes hydrate reservoirs one of the most abundant 
possible unconventional energy resources on 
Earth (Boswell and Collett, 2011; Milkov, 2004; Yin 
and Linga, 2019). Most of these hydrates lie within 
mudrocks and are unlikely to be of economic value 
because they have low hydrate concentration and 
little permeability (Boswell, 2009; Milkov, 2004). 
In contrast, Japanese researchers found hydrate 
saturations greater than 80% in silts and sands of the 
Nankai Trough (Tsuji et al., 2004). The high hydrate 

saturation and high intrinsic permeability of these 
deposits make them attractive for energy production 
(Boswell, 2009; Boswell and Collett, 2011). 

These types of hydrate reservoirs have now been 
found around the globe and recent expeditions 
have focused on characterizing their petrophysical 
behavior (You et al., 2021; You and Flemings, 2021). 
This work has focused on illuminating the effective 
permeability and the geomechanical behavior of the 
hydrate-bearing reservoirs and their bounding non-
reservoir sections (Biastoch et al., 2011; Boudreau et 
al., 2015). 

An accurate description of petrophysical behavior 
will better constrain reservoir simulation models and 
allow us to evaluate optimal approaches to safely 
produce hydrate reservoirs (Boswell et al., 2019). 
The chemistry and methane concentration of these 
reservoirs and their bounding seals can also be used 
to test models by which these reservoirs formed. 

A central challenge has been to understand the 
mechanism by which coarse grained hydrate 
reservoirs are charged and established through time 
(Malinverno and Goldberg, 2015). This will strengthen 
our ability to explore for hydrate reservoirs. 

Gas hydrate and CO2 sequestration
CO₂ could be stored as an immobile, solid, CO2-
hydrate. One strategy that has been attempted 
is to replace methane in a hydrate reservoir 
with CO2 (Boswell et al., 2017), preserving the 
reservoir’s geomechanical stability and reducing the 
environmental impact of the produced methane. 

An alternative approach is to inject CO2 into an aquifer 
that lies within the hydrate stability zone (Bhati et 
al., 2024; Darnell et al., 2019; Zheng et al., 2020). 
An improved understanding of the thermodynamic 
behavior of multi-component systems and of the 
geomechanical properties of gas hydrate reservoirs 
will inform simulation models for CO2 sequestration 
that seek to optimize storage approaches (Zhang et 
al., 2011).

https://doi.org/10.5281/zenodo.13971076
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Background
UT-GOM2-2 drilled and cored two boreholes at Site H WR313 (Figure F1). Site H was originally drilled (Hole H001) 
using logging while drilling (LWD) during the 2009 Gas Hydrates Joint Industry Project Leg II (JIP II) (Boswell et 
al., 2012a; Boswell et al., 2012b; Frye et al., 2012; Hutchinson et al., 2008; Shedd et al., 2010).

Geological overview
The study area is located near the southern boundary of Terrebonne Basin, in WR313, about 193 miles (168 
nautical miles) southwest of Port Fourchon, Louisiana, USA (Figure F1). The water depths range from 6,000 ft to 
6,800 ft in the study area (Figure F2). The local seafloor topographic gradient in the study area varies between 2° 
and 3°.

Terrebonne Basin is a salt-floored and salt-bounded mini-basin on the midslope of the central deepwater Gulf 
(Diegel et al., 1995; Frye et al., 2012; Prather et al., 1998). The strata that infill the basin dip and thicken to the 
north (Figure F3). Portnov et al. (2023) and Varona et al. (2023) describe the regional stratigraphy of the basin 
sediments. 

McConnell and Kendall (2002) first identified and described gas hydrate potential in the southeastern lobe of 
the Terrebonne Basin, where they observed seismic discontinuities called bottom simulating reflections (BSRs) 

Oregon State professor and lead microbiologist Rick Colwell places microbiology samples in the -80 °C freezer.  
Photo Credit: Jackson School of Geosciences
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seismic data, courtesy of WesternGeco.
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that they interpreted to record the base of hydrate 
stability zone (BHSZ) (Frye et al., 2012; McConnell and 
Kendall, 2002) (Figures F4 and F5). 

The BHSZ marks the boundary above which hydrate 
is stable and below which hydrate is not stable. At 
WR313, the presence of high saturation hydrate 
in coarse-grained layers results in a high acoustic 
impedance or positive polarity reflection due to 
the high velocity of the hydrate (Boswell et al., 
2016; McConnell and Zhang, 2005). Below the base 
of hydrate stability, gas may be present, causing 
a decrease in velocity and a significant negative 
acoustic impedance or negative polarity reflection. 
Thus, within a single horizon, the change in acoustic 
impedance from positive polarity reflection (peak) to 
a negative polarity reflection (trough) can be mapped 
as the BHSZ (Hillman et al., 2017b; McConnell and 
Kendall, 2002; Portnov et al., 2023; Shedd et al., 
2012).

Three previously-drilled boreholes exist in the 
WR313 study area (Figure F1; Tables T1 and T2). One 
exploration well, WR313 001, was drilled by Devon 
Energy in 2001 to target Pliocene and Miocene oil 

reservoirs (Figure F1). Two LWD boreholes WR313 
G001 (Hole G001) and WR313 H001 (Hole H001) 
(Figure F1), were drilled during JIP II to test gas 
hydrate targets (Boswell et al., 2012a; Boswell et 
al., 2012b; Collett et al., 2009; Frye et al., 2012; 
Hutchinson et al., 2008; Shedd et al., 2010).

Seismic horizons were mapped on 3D seismic 
data throughout the study area and assigned a 
numerical designation for each mapped horizon 
with the numbering increasing upward (e.g. Figure 
F4). Mapped horizons correlate to previously 
mapped horizons by others but they used a different 
nomenclature (Boswell et al., 2012a; Boswell et al., 
2012b; Hillman et al., 2017b). 

For example, Horizon (Hrz) 0300 is a seismic reflection 
that correlates with the top of the Orange sand 
interval. This horizon was previously termed the 
Orange horizon. It is thus presented as Hrz 0300 
(Orange) in this study (e.g. Figure F4). Similarly, 
Horizon 0400 is a regionally mappable reflector 
associated with the top of the lower Blue sand and 
is termed Hrz 0400 (Blue). Hrz 0300 (Orange) and Hrz 
0400 (Blue) are prominent reflectors in the 3D seismic 
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Figure F3: North-South regional cross section through the Terrebonne Basin (located in Figure F1). The interpreted ages are based on 
existing calcareous nannofossil and foraminifera biostratigraphy data from industry wells as described by Portnov et al. (2023). Figure 
modified from Portnov et al. (2023).
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Figure F5: Southwest (SW) to northeast (NE) oriented seismic section B to B’ (located in Figure F2) through Hole H001 showing major 
seismic features in the study area. Logging while drilling (LWD) Resistivity (RES) and gamma ray (GR) logs are shown at Hole H001 with 
values increasing to the right. Seismic data courtesy of WesternGeco.
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Site H seismic and LWD  
interpretation
In preparation for coring, LWD and seismic data were 
used to characterize the sediment type and hydrate 
occurrence at Hole H001. Five units (‘LWD Units’, e.g., 
Figure F8) were interpreted and the porosity along 
the borehole was calculated. Hydrate saturation 
within coarse-grained sediments was also calculated. 
Figure F9 and Figure F10 show the planned primary 
coring intervals: the shallow near-seafloor system 
(Figure F9), the Red sand (Figure F10, top), the Upper 
Blue sand (Figure F10, middle) and the Orange sand 
(Figure F10, bottom). 

In LWD data, water-saturated and gas hydrate-
saturated sediments have unique signals. Water-
saturated, unconsolidated, coarse-grained sediments 
usually wash out of the borehole during drilling and 
coring, leading to a very low LWD resistivity (often 
lower than the rest of borehole), enlarged caliper 
measurements, low bulk density, and low gamma ray. 
In comparison, water-saturated marine muds usually 
have stable borehole size, a resistivity between 1-2 
Ωm, and a mid-range gamma ray (between 60-120 
API). Hydrate-saturated coarse-grained sediments 
have high resistivity, high P-wave velocity, little to no 
change in bulk density, and low gamma ray values. 
This set of log responses indicates that hydrate is in 
the primary pore space of coarse-grained sediments. 

In contrast, hydrate in marine muds often forms 
in near vertical fractures, and these have been 
observed at Hole H001 (Cook et al., 2014). These 
intervals have high resistivity, hydrate-filled fractures 
visible on resistivity logs, and separation between 
propagation resistivity curves (Cook et al., 2010). The 

data and display a distinct phase reversal when they 
intersect the local BSR. 

This phenomenon, described above, guided the 
project seismic mapping strategy. Each of these 
seismic horizons were traced as a seismic peak 
above the BSR and as a seismic trough below the 
BSR (Boswell et al. (2012b) for an explanation 
of mapping strategy). In addition to the seismic 
horizons, a horizon was also generated connecting 
the discontinuous but locally strong BSR (Figure F4).

Hole G001, Hole H001, and WR313 001 penetrate  
Hrz 0400 (Blue) above the BSR (Figure F6), whereas 
only Hole H001 and WR313 001 penetrate Hrz 0300 
(Orange) above the BSR (Figure F7). These wells 
confirmed that positive seismic amplitudes above 
the base of hydrate stability record the presence of 
hydrates. Hole G001 penetrated Hrz 0300 (Orange) 
below the BSR. At this location, the Orange sand 
was mud prone and gas was not present. Frye et al. 
(2012), Boswell et al. (2012b), and Varona et al. (2023) 
interpret the specific depositional environments of 
the Blue and Orange sands.

Borehole API  Number Surface Lat. (NAD27) Surface Long. (NAD27) Bottom Lat. (NAD27) Bottom Long. (NAD27)
WR313 001 608124000700 26° 39’ 32.83’’ -91° 40’ 11.66’’ 26° 39’ 04.66’’ -91° 40’ 12.31’’
WR313 G001 608124003900 26° 39’ 47.48’’ -91° 41’ 01.94’’ 26° 39’ 47.91’’ -91° 41’ 01.81’’
WR313 H001 608124004000 26° 39’ 44.85’’ -91° 40’ 33.75’’ 26° 39’ 44.99’’ -91° 40’ 33.18’’

Table T1: Surface and bottom-hole locations of previously drilled boreholes in WR313 (BSEE, 2024). API = American Petroleum 
Institute; NAD27 = North American Datum of 1927; WR313 = Walker Ridge Block 313; BSEE = U.S. Bureau of Safety and Environmental 
Enforcement  

Borehole
API  

Number

Total 
MD  

(ft RKB)

TVD  
(ft RKB)

Air 
Gap  
(ft)

Water  
Depth 

(ft)
WR313 
001

608124000700 16,720 16,072 72 6,216

WR313 
G001

608124003900 10,200 10,199 52 6,562

WR313 
H001

608124004000 9,888 9,887 51 6,462

Table T2: Total Depth, rig height (air gap), and water depth 
of previously drilled boreholes in WR313 (BSEE, 2024). API = 
American Petroleum Institute; MD = Measured Depth; TVD = Total 
Vertical Depth; WR313 = Walker Ridge Block 313; BSEE = U.S. 
Bureau of Safety and Environmental Enforcement  
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Figure F9: Hole H001 Logging while drilling (LWD) data for the uppermost interval (0-150 mbsf), LWD Unit 1 with calculated porosity 
and hydrate saturation. The top interval is gray because the LWD data in the near-seafloor interval are of poor quality; A) LWD gamma 
ray (green line) and caliper data (gray line); B) LWD bulk density (red line); C) LWD calculated porosity (blue line); D) LWD P-wave 
velocity (pink line); E) LWD ring resistivity (light purple line) and formation resistivity with 100% water (Ro); F) Calculated hydrate 
saturation (blue line). 
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Downdip, in Hole G001, the lower-density intervals 
contain several cm to m-thick coarse-grained beds, 
identified as the Aqua and Yellow sands; however, 
these sands are either not present or very thin at Site 
H. One thin interval at 74 mbsf was identified that 
may be a coarse-grained hydrate bearing sand; if it 
contains hydrate, the hydrate saturation is low <10% 
(Figure F9).

LWD Unit 2 extends from Hrz 1000 to Hrz 0800 
(6,982-7,500 fbsl [158-316] mbsf); on the LWD logs, 
gas hydrate was identified in this interval in near-
vertical fractures. The gamma ray in LWD Unit 2 is 
slightly lower than in the overlying section. Based 
on discontinuous and chaotic seismic reflections of 
variable amplitude, this section may be a mud-rich 
mass transport deposit (MTD). Near the bottom of 
Unit 2, a 2.5 m thick sand layer named the Red sand 
has the first high saturation hydrate in Hole H001 
(Figure F10, top).

LWD Unit 3 underlies Unit 2 and extends from 
Hrz 0800 to Hrz 0500 (7,500-8,462 fbsl [316-610 
mbsf]). In seismic data, LWD Unit 3 is characterized 
by continuous parallel reflections of moderate 
amplitude; the corresponding section in Hole H001 
LWD has high gamma ray that changes to slightly 
lower gamma ray in the lower part of LWD Unit 3. LWD 
Unit 3 is interpreted as a hemipelagic mud-dominated 
section. 

LWD Unit 4 extends from Hrz 0500 downward to 
Hrz 0400 (Blue) (8,462-8,747 fbsl [610-696 mbsf]). 
Hrz 0500 is a strong seismic reflector, that truncates 
underlying stratigraphy, marking an erosional surface 
(Figure F5, label erosion). Hrz 0500 is associated 
with abrupt increase in gamma ray with depth. The 
seismic reflection data within the lower-most section 
of LWD Unit 4, below Hrz 0500 is characterized by 
discontinuous reflections with variable amplitude. 
This section is interpreted as MTD, which may be silt-
rich mud as indicated by moderately low gamma ray. 
Very thin low gamma-ray and low resistivity streaks 
within this zone indicate the presence of thin water-
bearing coarse-grained intervals. The hydrate-bearing 

high resistivity observed in these intervals, however, 
is caused by electrical anisotropy and not uniformly 
high hydrate saturation.

Hydrate saturation (Sh) is calculated from logging 
data using Archie’s equation (Equation E1) in coarse-
grained intervals only, as Archie’s equation is not 
accurate when vertical fractures or vugs are present 
(Archie, 1942; Goldberg et al., 2010).

Equation E1.

To calculate hydrate saturation, the LWD resistivity 
log with the highest vertical resolution for its depth 
of penetration, which is ring resistivity, RRING (Cook et 
al., 2012) was used. Water resistivity, Rw, is calculated 
using Fofonoff and Millard (1983). The Archie 
tortuosity exponent, m, is estimated from water-
saturated intervals and ranges from 1.9 to 2.5 for Hole 
H001. The hydrate saturation exponent, n, is set to 2.5 
(Cook and Waite, 2018). 

Finally, the porosity, φ is calculated from LWD bulk 
density using a pore water density of 1.03 g/cm3, a 
hydrate density of 0.925 g/cm3, and grain density of 
2.65 g/cm3 for coarse-grained intervals and 2.7 g/cm3 
for muds (Figures F9 and F10). These are common 
values used for the Gulf and are comparable to those 
measured for Green Canyon Block 955 (Fang et al., 
2020). In zones of borehole washout, the bulk density 
was very low. In these zones, the porosity was edited 
to reflect what was present in similar lithologies in 
nearby intervals. 

The five LWD units defined at Hole H001 using LWD 
and seismic data (Figure F8) are as follows:

LWD Unit 1 extends from the seafloor to Hrz 1000 
(0-6,982 fbsl [0-158 mbsf]). In the seismic data, LWD 
Unit 1 is imaged as sub-parallel reflections. The 
LWD data has a high gamma ray response indicating 
marine mud with few relatively thin lower gamma ray 
intervals. LWD Unit 1 is interpreted as a fine-grained 
hemipelagic interval with variable bulk density. 
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during the drilling of Hole H001 (green solid line in 
Figure F11) illustrate that the borehole temperature 
during drilling is less than the formation temperature 
because colder fluids were being circulated 
downhole, which is commonly seen in marine 
scientific drilling (Collett et al., 2010).

Pore pressure and fracture  
gradient
There was no indication of abnormal pressure 
when Hole G001 was drilled (Collett et al., 2010). 
However, at Hole G001, at depths greater than 8,264 
ft Rotary Kelly Bushing (RKB; see Methods: Depth 
units (Flemings et al., 2025b)), it was necessary to 
pump and rotate the drill string while simultaneously 
pulling out of the borehole, which was interpreted as 

Upper Blue sand (Figure F10, middle) is near the base 
of this interval. 

LWD Unit 5 starts at Hrz 0400 (Blue) (8,747 fbsl [696 
mbsf]). The lower part of the Blue sand is not present 
at Hole H001. LWD Unit 5 contains Hrz 0300 (Orange), 
as indicated by low gamma ray values, and correlates 
to the top of the Orange sand. High resistivity, high 
P-wave velocity, and low density in the Orange sand 
indicates the presence of pore-filling, high saturation 
gas hydrate (Figure F10, bottom) (Frye et al., 2012, 
Collett et al., 2012); the hydrate saturation in the 
Orange sand is the highest of all the sands in Hole 
H001 (Figure F10, bottom). 

Geothermal gradient and  
thermodynamic conditions
In-situ temperatures were estimated at Hole H001 
(Figure F11). The estimated temperature was based 
on the following assumptions. 

•	 At the depth of the interpolated bottom 
simulating reflector, methane is in three phase 
equilibrium (vapor-liquid-hydrate). The three-
phase equilibrium for methane hydrates was 
derived using the model developed by Moridis et 
al. (2012). 

•	 The pore fluid salinity is that of seawater (35 
ppt). 

•	 The pore pressure is hydrostatic and follows a 
gradient of 0.446 psi/ft (i.e., a fluid density equal 
to 1.03 g/cm3). 

•	 The seafloor temperature is 39.2 °F (4.0 °C) 
(Boyer et al., 2018). 

•	 Temperature increases linearly with depth from 
the seafloor to the base of the hydrate stability 
zone.

The predicted in-situ temperature at Hole H001 is 
shown as a green dashed line in Figure F11. The 
BSR at Hole H001 is interpreted to be at ~9,397 fbsl. 
Based on this, at Hole H001, the temperature at the 
base of the hydrate stability zone is estimated to be 
68.2 °F (20.1 °C) and the gradient to be 9.6 °F/1000 
ft (17.5 °C/km). The LWD temperatures acquired 

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

0 10 20 30
Temperature (°C)

Temperature (°F)
35 50 55 60 65 70 75 80 85 90 954540

WR313 H001
recorded 
temperature

Methane hydrate
phase boundary
3.5 wt. % salinity

WR313 H001/H002/
H003 predicted 
temperature

BSR at WR313 H001

Seafloor at WR313 H001

D
ep

th
 (f

bs
l)

Figure F11: Estimated temperature profile from the seafloor to 
the bottom simulating reflector (BSR) at WR313 Hole H001 (green 
dashed line). Solid green line illustrates the logging while drilling 
(LWD) borehole temperature. The phase boundary for methane 
hydrate is delineated by the red line: hydrate is stable to the left 
of this line and not stable to the right. The horizontal green dash-
dot line records the depth of the BSR. The system is assumed to 
be at the three-phase boundary at this depth as indicated by the 
crossing of the temperature profile with the methane hydrate 
stability boundary at the same depth.
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the borehole closing in on the bottom-hole assembly 
(BHA). At 9,244 ft RKB, a major blockage of flow 
occurred. Thereafter, the water-based mud weight 
was raised to 10 ppg and pumped continuously. At a 
depth of 9,599 ft RKB, the water-based mud weight 
was raised to 10.5 ppg. Thereafter, the well was drilled 
without incident (Collett et al., 2010). The subsequent 
Hole H001 was drilled with 10.5 ppg below 8,501 ft 
RKB without incident. 

Pre-drill pore pressure and fracture gradient profiles 
were constructed for Site H (Figure F12). The 
overburden stress (σv) was generated by integrating 
the density log from the LWD data in Hole H001. 
Pore pressures were assumed to be hydrostatic (uh) 
because of the lack of evidence for elevated pore 
pressures while drilling Hole H001. The hydrostatic 
pore pressure (uh) profile was expressed with a 
pore pressure gradient of 8.95 ppg (0.465 psi/ft). 
This hydrostatic gradient is slightly larger than the 
previously assumed 0.446 psi/ft. However, it reflects 
common practice in the drilling industry and was used 
in permitting the well. The least principal stress (σhmin) 
was estimated using Equation E2.

Equation E2.

Equation E2 is commonly used to model the fracture 
gradient (Eaton, 1969; Flemings, 2021). An upper 
bound of K = 0.9 and a lower bound of K = 0.7 was 
assumed. 

To avoid borehole closure at deeper depths when 
a weighted mud is not used as occurred for G001 
(Collett et al., 2010), the plan was to increase the 
drilling fluid weight at a depth of 8,113 ft RKB by 
switching to a 10.5 ppg water-based mud (gray 
horizontal line, Figure F12). 

https://doi.org/10.5281/zenodo.13971076


Expedition UT-GOM2-2  |  Summary  |  25  https://doi.org/10.5281/zenodo.13971076

m
ud program

Equivalent Mud Weight (PPG)

8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5

6450

7450

8450

9450

6950

7950

8950

De
pt

h 
(ft

 R
KB

)

Orange
sand

Red
sand

Upper Blue
sand

10.5 PPG
11.5 PPG

Fracture gradient low
er bound

Fracture gradient upper bound

Overburden gradient

Interpreted depth of
base of hydrate 

stability zone (BHSZ)

Orange sand (hydrate-bearing)

Red sand (hydrate-bearing)

Upper Blue sand (hydrate-bearing)

Fracture gradient lower bound Fracture gradient upper bound

Overburden Hydrostatic pressure

Depth of base of hydrate stability

10.5 PPG WBM 11.5 PPG WBM

Mud program
Po

re
 p

re
ss

ur
e 

as
su

m
ed

hy
dr

os
ta

tic
 8

.9
5 

PP
G

Figure F12: Pressure and fracture gradient plot for Site H in Walker Ridge Block 313 (WR313). The pore pressure is assumed to be 
hydrostatic (solid blue line). The overburden is shown with a solid black line. The fracture pressure is inferred to lie between the green 
and tan dashed lines based on assuming K = 0.7 and 0.9 in Equation E2. The planned mud program (gray solid line) shows the increase 
in mud weight to 10.5 ppg water-based mud (WBM) at 8,113 ft RKB.
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Science objectives
The goals of this expedition were to better understand the potential of deepwater marine hydrate reservoirs to 
serve as an energy resource (see Gas hydrates and energy), and to illuminate the role of the marine hydrate 
system in the carbon cycle (see Gas hydrates, the global carbon cycle, and the microbial factory). 

To accomplish these goals, we wished 1) to understand how coarse-grained hydrate reservoirs form and how 
carbon cycles through this sedimentary system where hydrate reservoirs reside, and 2) to understand the 
geological and petrophysical properties of the coarse-grained hydrate reservoir and its seals. These goals led to 
five principal objectives described below. 

1.	 Characterize the Orange sand and Upper Blue sand hydrate reservoirs and their bounding units by 
determining:

•	 hydrate saturation, dissolved methane concentration, and gas composition

•	 pore water solute concentration and composition

•	 sediment type (mineral and clay composition), grain size, and sorting

•	 compressibility

•	 strength behavior

•	 sediment composition and age

•	 microbial communities and activity

•	 physical properties such as porosity, permeability, grain density, and liquid limit

Dan Minarich prepares the Geotek overpack system used to transport pressure cores over land to UT. Photo credit: Geotek Ltd.
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bearing sediment, and to determine core cutting 
locations.

•	 Sample whole-round lithofacies-specific 
pressure cores for quantitative degassing and 
gas analysis, geomechanical testing, cryogenic 
freezing and depressurization for microbiology, 
rapid depressurization for pore water analyses, 
and distribution to other institutions.

•	 Conduct quantitative degassing of hydrate 
bearing sands to measure dissolved methane 
concentration, hydrate saturation, and assess 
the composition and source of the dissociated 
gas.

•	 Conduct quantitative degassing of clean 
background mud (no hydrate-filled fractures 
or coarse-grained beds/laminations) to 
measure the dissolved methane profile and 
gas composition with depth.

•	 Collect and assess gas produced from 
quantitative degassing to determine 
hydrocarbon, carbon dioxide, and noble 
gas content and hydrocarbon isotope and 
isotopologue ratios. 

•	 Conduct cryogenic freezing and 
depressurization to preserve high-hydrate 
sections as intact cores for microbiological 
analysis.

•	 Move all depressurized pressure core section 
that remain intact to the conventional core 
processing flow. Bag unconsolidated sediment 
from degassed core sections for mechanical 
studies (as a reconstituted core), physical 
properties, and biostratigraphy.

2.	 Conventional core analysis: 

•	 Obtain conventional cores to meet Objective 2

•	 Conduct conventional core logging and 
measurements

•	 Capture an immediate thermal imaging of the 
core to identify background sediments versus 
hydrate-bearing anomalies and provide an 
initial assessment of core quality.

2.	 Obtain vertical high-resolution geochemical and 
sedimentary profiles by continuously coring to 500 
fbsl and including: 

•	 pore water

•	 sedimentology 

•	 physical properties 

•	 microbiological properties

•	 mechanical properties

3.	 Measure the in-situ temperature and pressure 
profile 

•	 measure temperature with the Advance Piston 
Corer Temperature Tool (APCT-3)

•	 measure both temperature and pressure with a 
Pore Pressure Penetrometer

4.	 Characterize the dissolved methane concentration 
and analyze the gas molecular and isotopic 
compositions with depth by collecting pressurized 
core samples and quantifying the gas content.

5.	 Describe occurrences of hydrate-bearing thin 
sands < 3m-thick and hydrate-bearing near-vertical 
fractures in marine muds which also occur at 
WR313.

Operational strategy to meet our 
objectives

The Operational Strategy is described in detail in 
the Operational Plan (Flemings et al., 2023b) and 
Prospectus (Flemings et al., 2023a). 

The following operations were planned during the 
expedition to achieve our scientific objectives.

1.	 Pressure core analysis:

•	 Obtain pressure cores from key hydrate-bearing 
sands, bounding muds, and background muds 
to meet Objectives 1, 4, and 5.

•	 Conduct pressure core logging and imaging to 
determine the amount and quality of pressure 
core recovered, the amount of fall-in material, 
the lithofacies present, to discriminate hydrate-
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•	 Sample working half to construct 
comprehensive core descriptions containing 
the compositional, structural, stratigraphic, 
and diagenetic fabric and facies variations 
throughout the cores.

4.	 Formation temperature measurements:

•	 Measure formation temperature to meet 
Objective 3.

•	 Conduct core logging and imaging to inform 
stratigraphic context, track variation in 
sediment composition, and determine whole-
round core sampling locations.

•	 Measure sediment strength to characterize 
the mechanical state of the sediments as a 
function of depth and inform the switch from 
the Geotek-Advanced Piston Corer (G-APC) 
to the Geotek Extended Core Barrel (G-XCB) 
coring.

•	 Sample whole-round cores for void gas, 
headspace gas, pore water geochemistry, 
microbiology, physical properties, composition, 
cell counts, and geomechanics.

•	 Conduct gas analysis to create a profile of 
hydrocarbon fluids and gases encountered at 
depth.

•	 Conduct initial pore water analysis of 
ephemeral properties to determine the role 
of biogeochemical and alteration processes 
within sediments, as well as the contribution 
of advected deep fluids into the shallower 
hydrate stability zone.

3.	 Split core analysis:
•	 Split intact core sections

•	 Describe archival half visually

•	 Document bedding, sedimentary structures, 
major lithology, relative grain sizes, Munsell 
color, presence of diagenetic nodules, 
bioturbation, and drilling/coring disturbance. 

•	 Conduct microscopic sediment analysis via 
smear slide and coarse fraction sampling and 
description to complete the lithostratigraphic 
core description and log.

•	 Conduct coarse-fraction sediment analysis for 
identification of changes in bulk composition. 

•	 Conduct biostratigraphic observations of key 
nannofossil markers species to determining 
sediment age and sedimentation rates.

•	 Conduct split cores logging and imaging to 
interpret depositional environments and 
geological history.
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Site summary
Operational summary
A detailed review of Expedition UT-GOM2-2 Site H operations is provided in Expedition UT-GOM2-2 Site H 
(Flemings et al., 2025a) and summarized below. 

A graphical presentation of all operations at Site H is shown in Figure F13. Schedule and operational details for 
this expedition can be found in Site H: Operational summary (Flemings et al., 2025a). Mobilization began on 30 
July 2023 and continued for approximately 5 days. During mobilization, tools, personnel, equipment, supplies, 
and fluids were transferred to the Helix Q4000 deepwater well intervention vessel (Q4000). Service vans were 
brought online, and downhole tools were tested.

UT-GOM2-2 was executed from 0000 hrs on 04 August 2023 to 2400 hrs on 30 August 2023 (27 days). Two 
"twinned" boreholes were drilled and cored adjacent to the original WR313-H001 (Hole H001) hole that was 
drilled during the 2009 Joint Industry Project Expedition II (Collett et al., 2012) (Figure F14). See Site H: Surface 
location (Flemings et al., 2025a). The calculated water depth at the start of each hole was 6,454 ft, 3 feet deeper 
than the measured depth at Hole H001. See Site H: water depth and rig floor elevation (Flemings et al., 2025a).

Hole H003 was drilled first. Hole H003 is located 66 ft (20.12 m) NNE of Hole H001. Hole H003 was spudded with 
three successive G-APC hydraulic piston cores and continuously cored with both piston and pressure coring 

University of Texas at Austin (UT) team members Alejandro Cardona, Donnie Brooks, and Josh O’Connell prepare the penetrometer for 
deployment. Photo credit: Geotek Ltd.
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Figure F13: Measured depth of the bit depth as a function of time at Walker Ridge Block 313 (WR313) for Hole H002 and Hole H003. 
The measured depth of the bit is shown as a green line. On top of the green line, stops are shown for pressure coring as orange 
dots, conventional coring as green squares and red diamonds, and gyroscopic measurements as dark yellow squares. Operational 
downtime or non-productive time (NPT) is shown as transparent yellow columns. Projected sand depths are shown as aqua blue, 
yellow, red, blue, and orange horizontal lines. The projection of depths is discussion in Site H: Plotting H001, H002, and H003 downhole 
data (Flemings et al., 2025a). A detailed review of Site H operations is provided in Site H: Operations (Flemings et al., 2025a).
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RKB (861.3 mbsf) with 10.3 to 10.5 ppg water-based 
mud. Pressure coring included continuous coring of 
the Terrebonne Basin Orange sand and surrounding 
layers from 9,131 to 9,221 ft RKB (800.0 to 827.5 mbsf). 
See Coring.

During operations, non-productive time was 
incurred from tool pack-off, resulting in the BHA 
being partially or completely retrieved to the rig 
floor, Q4000 Top Drive System (TDS) blower motor 
failure, and a piece of wireline lodged in the coring 
tool (Figure F13, yellow columns). Downhole tools 
became stuck inside the BHA three times because 
coarse-grained sediment packed off around the tool 
within the BHA. There are two possible root sources 
of this coarse-grained sediment. The first possibility 
is the sand layer present on the seafloor at Site H. 
This sand layer developed into a crater around the 
borehole and dumped sand into the borehole and 
made removal of the sand-sized particles and drill-
cuttings more difficult. Several operational events 
described in Site H (Flemings et al., 2025a) that also 
prevented circulation for significant periods, possibly 
exacerbated the problem. The other possible source 
of the coarse-grained sediment may have been 
associated with periods of non-circulation, which may 
have also caused barite to fall out of the water-based 
mud. See Site H: Drilling challenges (Flemings et al., 
2025a).

Demobilization from the site began on 31 August 
2023. After completing the transfer of equipment 
and personnel, demobilization ended after 2 days, 
when the Q4000 moved 1-mile off location on 01 
September 2023. From the Q4000, conventional and 
conventionalized (depressurized pressure) cores 
were transported by Geotek to College Station, Texas 
for conventional core logging (MSCL-S and CT), and 
thirteen pressure cores were delivered to the UT 
Pressure Core Center. The remaining pressure core 
sections were transported to Geotek facilities in Salt 
Lake City, Utah for further processing. After logging, 
conventional and conventionalized cores were 
transported from College Station, Texas to Salt Lake 
City for further processing. 

to 7,015 ft RKB (155.1 mbsf) with seawater. One 
G-XCB core and three pressure cores were acquired 
from 7,420 to 7,480 ft RKB (278.6 to 296.9 mbsf). See 
Coring. One deviation survey was conducted in Hole 
H003 after the borehole was advanced to a depth of 
7,505 ft RKB. The borehole was found to trend ESE 
(Figure F14, WR313 H003 bottom) with inclination 
increasing from 6.06 degrees near the mudline to 
7.75 degrees near the bottom of the borehole and the 
hole was abandoned. See Site H: Borehole deviation 
survey (Flemings et al., 2025a). A projection of the 
stratigraphic depths in Hole H001 to Hole H003 was 
determined. This projection is applied to Hole H001 
Depths when comparing Hole H001 LWD data to Hole 
H003 core data. See Site H: Projection of Hole H001 to 
Site H measured depth (Flemings et al., 2025a).

Hole H002 was drilled second and is located 65 ft 
(19.8 m) SSW of Hole H001. Five directional surveys 
were conducted in Hole H002. They showed that the 
hole remained near vertical. See Site H: Borehole 
deviation survey (Flemings et al., 2025a). Hole H002 
was intermittently pressure cored from 8,620 ft RKB 
(644.3 mbsf) to a total measured depth of 9,332 ft 
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Figure F14: The locations, distances, and azimuths of the 
boreholes at Site H. Hole H001 location coordinates from the 
U.S. Bureau of Safety and Environmental Enforcement (BSEE, 
2024). The locations of Hole H002 and Hole H003 as surveyed 
by Fugro (top-hole) and Gyrodata (bottom-hole) during UT-
GOM2-2. Bathymetry was derived from seafloor reflector in 
three-dimensional seismic data. WR313 = Walker Ridge Block 
313; NAD27 = North America Datum of 1927. RKB = Rotary Kelly 
Bushing.
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(BHA) that does not allow the deployment of 
conventional coring tools and was only deployed in 
Hole H002. 105.0 ft (32.0 m) was retrieved at elevated 
pressure (green zones, Figure F15, column K) and 
the remaining 74.8 ft (22.8 m) was processed as 
conventional core (pink zones, Figure F15, column 
K). After pressure coring, most of the pressure 
core was quantitatively degassed and processed 
as conventional core. 29.3 ft (8.92 m) was kept at 
elevated pressure and transferred to UT Pressure Core 
Center for future testing. 

During pressure coring, recovery was low in sand-
prone sections. Figure F16 shows an example of the 
cores across the Red sand. In this case, 3 continuous 
pressure cores were taken (Core H003-27CS, H003-
28CS, and H003-29CS). It is clear that in sands, where 
the LWD gamma ray values are low (Figure F16, 
column D), recovery is low (Figure F16, column J, Core 
H003-28CS). In contrast, where the section is more 
mud prone, recovery is much higher (Figure F16, 
column J, Core H002-27CS, and -29CS). This behavior 
was again observed during pressure coring of the 
Upper Blue and Orange sands. 

There were 25 pressure core deployments and one 
pressure coring test. Sixteen pressure cores (64%) 
were recovered at elevated pressure (Figure F15, 
column J, green boxes). Nine (36%) were recovered 
at atmospheric pressure (Figure F15, column J, pink 
boxes) when the PCTB failed to seal. Several failures 
were due to fall-in sediment jamming the ball and 
debris in the tool. Most cores that sealed did not seal 
at coring depth, but instead sealed as the core barrel 
was being raised in the pipe. See Site H: Pressure 
coring for more details (Flemings et al., 2025a).

Conventional core recovery and tool 
performance

From both boreholes, 533 ft (162.6 m) of conventional 
core was acquired. Cores were mostly expansive, 
and conventional coring generally had recoveries 
greater than 100% (Figure F15, column J). Core 
expansion resulted in an average recovery of 
sediment compared to the coring interval of 122%. 

Equipment was remobilized in Salt Lake City. Core 
analysis and sampling was conducted from 19 
September 2023 to 26 September 2023 (8 days).

Coring
Figure F15 illustrates the integrated coring program 
for Hole H002 and Hole H003. Hole H003 extended 
to 296.8 mbsf (Figure F15, column G). In Hole H003, 
eighteen G-APC, one G-XCB, and ten Pressure Coring 
Tool with Ball Valve (PCTB) cores were taken, with the 
PCTB cores being acquired using the Cutting Shoe 
configuration (PCTB-CS) (Figure F15, column I). 

In Hole H003, continuous piston coring was 
performed to 7,015 ft RKB (155.1 mbsf) and thereafter 
intermittent cores were taken to a total depth of 
7,480 ft RKB (296.8 mbsf) (Figure F15, column I). 
Twelve temperature measurements were made in 
conjunction with some of the piston cores (APCT-3, 
Figure F15, column H). Pressure cores were acquired 
at ~100 ft (31 m) intervals from the seafloor down 
to 6,990 ft RKB (147.6 mbsf) to measure the buildup 
of the dissolved methane concentration with depth 
(Figure F15, column I). 

Hole H002 reached a total depth of 9,332 ft RKB (861.3 
mbsf) (Figure F15, column G). Only pressure cores 
were taken in Hole H002, and these were focused 
in and around the Upper Blue and Orange hydrate-
bearing sands (Figure F15, column I). Fifteen pressure 
cores were taken using two different configurations of 
the tool: the PCTB-CS and the Face Bit configuration 
(PCTB-FB) of the PCTB (Figure F15, column I). 

Pressure core recovery and tool  
performance 

Between the two boreholes, a total of 179.8 ft (54.8 
m) of core was acquired from 25 deployments of 
the PCTB; there were 4 deployments of the Face Bit 
configuration (PCTB-FB), and 21 deployments of the 
Cutting Shoe configuration (PCTB-CS). 

The PCTB-CS configuration enables the deployment 
of both conventional coring and pressure coring tools 
and was deployed in both boreholes. In contrast, 
the PCTB-FB has a unique bottom hole assembly 
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Figure F15: Core deployments and temperature measurements made during UT-GOM2-2. A) Measured depth in feet below rig floor (ft 
RKB); B) Measured depth in meters below the seafloor (mbsf); C) Projected logging while drilling (LWD) gamma ray in green. The depth 
projection of Hole H001 LWD data onto Hole H002 and Hole H003, used in columns C, D, E, and F, is discussed in Site H (Flemings et al., 
2025a); D) Projected LWD resistivity in red; E) Projected LWD bulk density in black; F) Seismic horizons (Hrz) and stratigraphic tops as 
described in Site H: Plotting H001, H002, and H003 downhole data (Flemings et al., 2025a); G) Drilled interval for Hole H003 in blue and 
Hole H002 in tan; H) In-situ temperature measurement locations made with the Advanced Piston Coring Temperature Tool (APCT-3); I) 
Core deployments. Advanced Piston Cores (G-APC) are shown in light aqua blue. Extended Core Barrel (G-XCB) cores are shown in dark 
aqua blue. Core acquired using the Pressure Coring Tool with Ball Valve (PCTB) in the Cutting Shoe configuration (PCTB-CS) are shown 
in dark yellow and in the Face Bit configuration (PCTB-FB) in orange; J) Percent core recovery; K) Recovery pressure for the pressure 
cores measured with a pressure gauge on the rig. Cores recovered at elevated pressure are shown as green, and atmospheric pressure 
are shown as pink. A discussion about pressure coring operations and sealing is presented in Site H: Pressure coring (Flemings et al., 
2025a).
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Figure F16: Core deployments at the Red sand. A) Measured depth in feet below rig floor (ft RKB); B) Measured depth in meters below 
the seafloor (mbsf); C) Projected logging while drilling (LWD) gamma in green. The depth projection of Hole H001 LWD data onto Hole 
H002 and Hole H003, used in columns C, D, E, F, and G, is discussed in Site H (Flemings et al., 2025a); D) Projected LWD caliper in black; 
E) Projected LWD resistivity in red; F) Projected LWD bulk density in black; G) Seismic horizons (Hrz) and stratigraphic tops as described 
in Site H (Flemings et al., 2025a); H) Lithologic units; I) Core deployments. Extended Core Barrel (G-XCB) cores are shown in dark aqua 
blue. Pressure Coring Tool with Ball Valve in the Cutting Shoe configuration (PCTB-CS) are shown in dark yellow. Area cored but not 
recovery is shown with gray diagonal hatches; J) Percent core recover; K) Recovery pressure for the pressure cores measured with a 
pressure gauge on the rig. Cores recovered at elevated pressure are shown as green. A discussion about pressure coring operations 
and sealing is presented in Site H: Pressure coring (Flemings et al., 2025a).
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G-APC cores were planned at less than the 31 ft (9.5 
m) core liner length to account for expansion. This 
was accomplished by firing the G-APC a short distance 
above the top of the formation. G-APC deployments 
achieved full penetration through Core H003-21H 
(6930 ft RKB [129.2 mbsf]). G-APC refusal occurred 
with the acquisition of Core H003-25H when full 
stroke of the tool was not achieved. G-XCB coring was 
used to acquire Core H003-26X (7420 ft RKB [278.6 
mbsf]).
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Initial results
In this section we summarize results from four types of studies: 1) Lithostratigraphy, 2) Calcareous nannofossil 
biostratigraphy, 3) In-situ temperature, and 4) Methane concentrations, hydrate saturation, and gas 
geochemistry. These examples highlight and integrate results across the drilling program. The results described 
here are presented in much more detail in Flemings et al. (2025a). In addition, other significant results not 
described here are also presented in Flemings et al. (2025a). 

Lithostratigraphy
We integrated core data from Hole H002 and Hole H003 and LWD data from Hole H001 to describe seven 
successive lithologic units that are composed of one or several lithofacies (Figure F17, column H and I). A 
detailed discussion of how these lithologic units were defined and what lithofacies are present within these 
lithologic units are described in Site H: Lithostratigraphy (Flemings et al., 2025a). We review these lithologic 
units below:

Lithologic Unit I (0-4.5 mbsf)

Unit I is a massive silt- to very fine sand encountered from the seafloor to a depth of 4.5 meters (Figure F18). The 
Massive Sand lithofacies was not interpreted prior to drilling. During drilling, this sand repeatedly slid into the 

Samples of sediments taken from a variety of cores prepared for “headspace gas” sampling. Credit: Jackson School of Geosciences 

https://doi.org/10.5281/zenodo.13971076


Expedition UT-GOM2-2  |  Summary  |  37  https://doi.org/10.5281/zenodo.13971076

I

II

III

IV

V

VI

VII

Unit 1

Unit 2

Unit 3

Unit 4

Unit 5

(Aqua sand)

(Yellow sand)

JIP Unit

(Red sand)

Hrz 0800

Hrz 0500

Upper Blue sand

Hrz 0400

(Orange sand)

850

800

750

700

650

600

550

500

450

400

350

300

250

200

150

100

50

0

Hrz 0300

Hrz 0900

Hrz 1000

Hrz 1100

Hrz 1200

2.
5

2.
25

21.
75

10
00

10
0

10112
5

10
0

755025

LITHOFACIES

LWD 
UNITS

TOPSBULK DENSITY
(g/cc)

RESISTIVITY
(ohm m)

GAMMA RAY
(API)

D
EP

TH
 (m

bs
f)

(H)(G)(F)(E)(D)(C)(B)(A)

LITHOLOGIC 
UNITS

(I)

H002/H003
CORED 

INTERVALS

M
as

si
ve

 S
an

d
O

oz
e

M
ud

 &
 S

ilt
 (<

5%
 S

ilt
)

M
ud

 &
 S

ilt
 (>

5%
 S

ilt
)

Sa
nd

 &
 M

ud
 (<

15
%

 S
an

d)
Sa

nd
 &

 M
ud

 (>
65

%
 S

an
d)

Figure F17: Interpreted Site H lithologic units and lithofacies. A) Measured depth in meters below the seafloor (mbsf); B) Projected 
logging while drilling (LWD) gamma ray in green; C) LWD resistivity in red. The depth projection of Hole H001 LWD data onto Hole H002 
and Hole H003, used in columns B, C, D, F, and G, is discussed in Site H (Flemings et al., 2025a); D) Projected LWD bulk density in black; 
E) Cored interval for Hole H003 and Hole H002 in black; F) Seismic reflectors (Hrz = Horizon) and stratigraphic tops as described in Site 
H: Plotting H001, H002, and H003 downhole data (Flemings et al., 2025a); G) LWD units (See Site H seismic and LWD interpretation); 
H) Lithologic units; I) Lithofacies.
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borehole, which may have contributed to packing off 
of the bottom hole assembly at deeper depths (see 
Site H Drilling Challenges (Flemings et al., 2025a). 
Kumar et al. (2024) suggest that this sand either 
reflects expulsion of sand from the deeper sands 
penetrated at Hole H001 during JIP II (Collett et al., 
2012) or it represents a recent slope failure from the 
nearby uplifted salt ridge.

Lithologic Unit II (4.5-160 mbsf)

Unit II is composed of interbedded Ooze with Mud & 
Silt (Figure F19, column C). The LWD density log from 
H001 is expressed as a porosity (Figure F19, column 
E, blue line): the ooze has a higher porosity than the 
intervening muds. Direct measurements of porosity 
confirm that the ooze has significantly higher porosity 
than the mud intervals (Figure F19, column E, orange 
triangles and black circles). The ooze has a relatively 
high percentage of calcareous nannofossils (Figure 
F19, column D), and low magnetic susceptibility 
(Figure F19, column F).

Lithologic Units III (160-610 mbsf), V, 
and VII

Units III, V, and VII (Figure F17, column H) have high 
LWD Gamma Ray values (Figure F17, column B) and 
are composed of the Mud & Silt lithofacies (Figure 
F17, column I). Mud dominates with occasional 
millimeter to centimeter scale silt/sand layers (Figure 
F20, column B). The mud is a silty clay grain size when 
analyzed with the hydrometer method (Figure F20, 
column C). 

Lithologic Units IV (Blue sand) and VI 
(Orange sand)

Unit IV (Upper Blue sand) and VI (Orange sand) are 
composed of interbedded sand and mud, termed 
the Sand & Mud lithofacies. These horizons are 
recognized as significant hydrate reservoirs in the 
Terrebonne basin and were key targets of Expedition 
UT-GOM2-2 (Frye et al., 2012; Meazell and Flemings, 
2022) (Figures F17, F6, and F7). In Hole H002, Unit 
IV (Upper Blue sand) has a smaller fraction of sand 
(<15%) relative to Unit VI (Orange sand) (>15%). The 
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Figure F18: Visual core description (VCD) of the grain size at 
the top of Site H. Core H003-01H was taken at the seafloor and 
was the first core taken during drilling. A) Measured depth in 
feet below rig floor in feet (ft RKB), B) Measured depth in meters 
below seafloor (mbsf), C) Core Section number, D) VCD of grain 
size. Yellow is sand. Blue is silt. Gray is clay. See Methods: Grain 
size (Flemings et al., 2025b); Further discussion of this sand 
is provided in Site H: Drilling challenges and lithostratigraphy 
(Flemings et al., 2025a).
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Figure F19: Lithologic Unit II. A) Measured depth in meters below the seafloor (mbsf); B) Lithologic units; C) Lithofacies; D) Fraction of 
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associated sections of Methods (Flemings et al., 2025b) and Site H (Flemings et al., 2025a).
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lower sand/silt percentage of Unit IV relative to Unit 
VI is illustrated by the weaker gamma ray response in 
Unit IV relative to Unit VI (Figure F17, column B). 

Figure F21 spans Unit VI, the Orange sand. Low 
LWD GR values (Figure F21, column B) are generally 
associate with high resistivity (Figure F21, column 
D) and high velocity (Figure F21, column E). Prior to 
our coring program, these zones were interpreted to 
record hydrate bearing horizons. The PCATS density 
(Figure F21, column F) and velocity (Figure F21, 
column G) data show that these zones have intervals 
of low density and high core velocity. 

The sand/silt beds range in thickness from millimeter 
to decimeter scale as seen in Core H002-09CS (Figure 
F22, columns E and F). Occasionally graded bedding 
can be observed in the sand/silt intervals (Figure F22, 
column C). Most of the intervals contain more silt than 
sand when measured by laser particle analysis, except 
for one 40 cm interval near the top of Core H002-09CS 
(Figure F22, column D). The net to gross ratio of silt 
to sand layer thicknesses is greater than 50% (Figure 
F22, column F).  

Figure F23 provides an expanded view of the hydrate-
bearing sand interval in Unit VI (Orange sand) Core 
H002-07CS. The lower half of the recovered interval 
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Figure F21: Lithologic Units V, VI and VII. Lithologic Unit VI is composed of the Mud & Sand lithofacies and is also called the Orange 
sand. A) Measured depth in meters below the seafloor (mbsf); B) Projected logging while drilling (LWD) gamma ray in green. The depth 
projection of Hole H001 LWD data onto Hole H002 and Hole H003, used in columns, B, C, D, and E, is discussed in Site H (Flemings 
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Core Analysis and Transfer System (PCATS) gamma density in black; G) PCATS pressure core P-wave velocity in blue; H) Visual core 
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cores measured with a pressure gauge on the rig. Cores recovered at elevated pressure are shown as green, and atmospheric pressure 
are shown as pink. An expanded view of Lithologic Unit VI Core H002-09CS is presented in Figure F22 and H002-07CS in Figure F23.
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Figure F22: Expanded view of Lithologic Unit VI Orange sand (Core H002-09CS). This core was recovered at atmospheric pressure and 
thus was split, sampled, and described. A) Measured depth in meters below seafloor (mbsf); B) Section number; C) Split core images 
from the line scanner; D) Particle size distribution from laser particle analysis using the geoscience classification; E) Uncalibrated 
silicon to aluminum ratio calculated from X-ray fluorescence (XRF); F) Visual core description (VCD) of grain size: sands = yellow, silts 
= blue, clay = gray. Methods and further discussion of the visual core description, core imaging, and particle size distribution can be 
found in the associated sections of Methods (Flemings et al., 2025b) and Site H (Flemings et al., 2025a).
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Figure F23: Expanded view of Lithologic Unit VI Orange sand (Core H002-07CS). A) Measured depth in meters below seafloor (mbsf); 
B) Projected logging while drilling (LWD) gamma ray in green. The depth projection of Hole H001 LWD data onto Hole H002 and Hole 
H003 is discussed in Site H (Flemings et al., 2025a); C) Projected LWD resistivity in red; D) Projected LWD Velocity in blue; E) Pressure 
Core Analysis and Transfer System (PCATS) gamma density in black; F) PCATS pressure core P-wave velocity in blue; G) PCATS X-ray; 
H) Lithologic units; I) Core deployments; J) Recovery pressure for the pressure cores measured with a pressure gauge on the rig. Cores 
recovered at elevated pressure are shown as green. Methods and further discussion of core logging and imaging, and pressure coring 
can be found in the associated sections of Methods (Flemings et al., 2025b) and Site H (Flemings et al., 2025a).
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Methane concentrations, hydrate 
saturation, and gas geochemistry

The concentration of methane present or the 
methane hydrate saturation was calculated based 
on the volume of the sample, a calculated porosity, 
a typical hydrate stoichiometry, and a typical 
hydrate density (Dickens et al., 2000). If the total 
amount of methane present was less than the in-situ 
maximum solubility of methane in water, then the 
sample did not contain methane hydrate, and the 
dissolved methane concentration was calculated. If 
the total amount of methane was greater than the 
in-situ maximum solubility of methane in water, the 
consequent hydrate saturation of the pore space was 
calculated based on the amount of methane in excess 
of the solubility limit.

We conducted quantitative measurements of the 
volume of gas and liquid produced during the 
stepwise depressurization of pressure cores to 
atmospheric pressure on 22 pressure core sections. 
Most of these analyses were performed on mud-rich 
material. One sample contained a transition from clay 
to sand rich layers of Lithologic Unit IV (Blue sand) at 
675.13-675.33 mbsf (Section H002-2FB-4). The volume 
of gas produced was used to determine the in-situ 
concentration of dissolved methane in the pore water, 
the presence of methane hydrate, and the saturation 
of the pore space with methane hydrate. 

Figure F26 illustrates the total volume of gas 
produced for three samples, one where no hydrate 
was present (Figure F26, Section H003-24CS-2, 
brown circles) and two where the dissolved methane 
concentration of the pore water was saturated and 
the core contained methane hydrate (Figure F26, 
Section H003-29CS-3 orange diamonds and Section 
H002-02FB-4 blue triangles). 

During depressurization of the sample without 
hydrate (Section H003-24CS-3) only 1.66 L of 
methane was produced from a 94 cm long section of 
pressure core. When methane hydrate is present in 
low concentration (H003-29CS-3, Figure F26 orange 
diamonds), there is an abrupt bend present at ~ 6MPa, 

has high velocity and is interpreted to be a sand rich 
interval with a high concentration of hydrate.

Calcareous nannofossil  
biostratigraphy
340 samples were examined for calcareous 
nannofossil assemblages. Six Pleistocene calcareous 
nannofossil biohorizons were encountered over 
the combined depth of Hole H003 and H002 (Figure 
F24). The youngest biohorizon (the cross-over in 
dominance from Gephyrocapsa spp. to E. huxleyi) 
was encountered at approximately 17 mbsf and 
is 0.085 Ma. The oldest biohorizon encountered 
was P. lacunosa C at 0.83 Ma (Figure F24). All strata 
penetrated are estimated to be a Pleistocene age 
(<0.91 Ma). A detailed discussion of the nannofossil 
biostratigraphy is given in Flemings et al. (2025a). 

There is a striking decrease in accumulation rate 
with time. Lithologic Units III-VI lie within the zone 
of rapid accumulation and record an accumulation 
rate that decreases from 4.4 to 3.4 mm/yr. Unit II is 
deposited much more slowly with accumulation rates 
decreasing from 0.39 to 0.86 mm/yr upward through 
the section. 

In-situ temperature
Discrete measurements of in-situ temperature at 
multiple depths in Hole H003 were made with the 
APCT-3. This is an instrumented cutting shoe that 
measures temperature while piston coring. See 
Methods (Flemings et al., 2025b).

The inferred in-situ temperature profile with depth for 
Hole H003 is shown in Figure F25. The temperature 
gradient from these measurements is inferred to 
be 25 °C/km. However, the estimated temperature 
gradient based on the depth of the BSR is estimated 
to be 17.5 °C/km (Figure F25, solid black line). The 
gradient of 17.5 °C/km is an average value across 
the entire hydrate stability zone down to the BSR at 
about 895 mbsf. By contrast, this measurement-based 
temperature gradient of 25 °C/km is for the first 150 
mbsf. This discrepancy remains a challenge for future 
analysis. 
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Figure F24: Composite time-depth plot of calcareous nannofossil biohorizons through Hole H003 and Hole H002 using compressed 
depths. Calcareous nannofossil events are from the Biostratigraphic Chart – Gulf Basin, USA (Waterman et al., 2017), Gradstein et al. 
(2012), and Constans and Parker (1986). On the age-depth curve, solid black lines correlate with recovered intervals where samples 
were taken regularly for biostratigraphic analysis. Dashed black lines correlate with drilled intervals through which sediment samples 
were not recovered and biostratigraphic analysis could not be performed. First appearance datums (FAD, evolution) are shown as 
upright triangles, and last appearance datums (LAD, extinction) are shown as inverted triangles. All depths are compressed measured 
depth in meters below the seafloor (mbsf). Methods and further discussion can be found in the calcareous nannofossil biostratigraphy 
sections of Methods (Flemings et al., 2025b) and Site H (Flemings et al., 2025a).
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Gas geochemistry

Hydrocarbon gases produced during quantitative 
degassing were analyzed and found to all be > 99.99% 
methane. Gas samples from voids inside the core 
liner were extracted into syringes and gas bags. 
Void gases in syringes were measured onboard via 
gas chromatography with a thermal conductivity 
detector (GC-TCD) within hours of collection. Void 
gases could only be collected on conventional cores. 
Pressure core gas samples were also collected during 
depressurization in syringes and a subset in gas bags. 

which records the dissociation of hydrate into gas 
and water. From this sample, 4.28 L of methane was 
produced from a 65 cm long section of pressure core. 
A similar volume of methane was produced from the 
20 cm section, Section H002-02FB-4 (blue triangles), 
due to its higher hydrate saturation. In this case, the 
lower pressures are most likely due to endothermic 
cooling as the concentrated hydrate is dissociated. 

Dissolved methane concentration increased with 
depth and reached 100% saturation at 146.6-147.5 
mbsf (Section H003-24CS-5) (Figure F27, column C). 
Beneath this depth, hydrate was present (Figure F27, 
column D). This increase in methane concentration 
was coincident with a decline with depth in the total 
organic carbon (Figure F27, column E), and increase 
in the δ13C value with depth. Taken together, these 
observations suggest increasing biodegradation has 
occurred with depth (You et al., 2019).
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Figure F25: Temperatures with true-vertical depth in meters 
below the seafloor (mbsf). The gradient of 25 °C/km (red line) 
is linear fit using measured temperature values (blue circles). 
The black line is the inferred linear temperature profile by 
considering the intersection between the bottom simulating 
reflector (BSR) depth (black dashed line), the hydrate phase 
boundary (light blue line) and the seafloor temperature. Methods 
and further discussion can be found in the in-situ temperature 
sections of Methods (Flemings et al., 2025b) and Site H (Flemings 
et al., 2025a).
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Figure F26: Example quantitative degassing results. Cumulative 
total volume of methane (CH4) (including total methane expelled 
and remaining in the core storage chamber) produced from 
three sections of pressure core as pressure is decreased in steps. 
The brown circles show a long (94 cm) unsaturated sample 
(dissolved methane concentration is less than 100% and there 
is no hydrate, Section H003-24CS-2). The orange diamonds 
show a shorter (65 cm) saturated sample with a small amount 
of methane hydrate (dissolved methane concentration is 100% 
and the methane hydrate concentration was 6% of the pore 
space, Section H003-29CS-3). The blue triangles show and even 
shorter (20 cm) saturated sample with a higher concentration 
of methane hydrate (dissolved methane concentration is 100% 
and the average methane hydrate concentration in the pore 
space was 24%, but with most of the hydrate concentrated 
in the lower half (Section H002-02FB-4). Thus, the actual 
hydrate concentration was higher in this layer. Decreases in 
total methane with decreasing pore are not real but artifacts 
introduced when accounting for the change in volume of 
equipment as the pressure decreases. Methods and further 
discussion can be found in the dissolved gas concentrations and 
hydrate saturation sections of Methods (Flemings et al., 2025b) 
and Site H (Flemings et al., 2025a).
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Methane to ethane (C1/C2) and methane to ethane 
and propane (C1/(C2+C3)) decrease with depth, mainly 
driven by the increase in ethane with depth (Figure 
F28). Ethane is present only in trace amounts (9 to 
114 ppm) in all samples. Most samples contain trace 
propane (< 9 ppm) and fewer contain i-butane or 
n-butane (< 4 ppm). All values of C1/C2 and C1/(C2+C3) 
are relatively high (>1000). δ13C-CH4 (Figure F28, left-
most column) increases with depth, but all values are 
lighter than -69.3 ‰ VPDB (mean: -73.9 ‰ VPDB). 

The decrease in C1/C2 and increase in δ13C-CH4 is most 
apparent in the continuously cored section (0-155.1 
mbsf) but the values near the Red sand (~280-300 
mbsf) and through the Upper Blue sand unit (~674-

678 mbsf) are consistent with the overall trend of 
the shallower sediments. The highest variability 
was observed in the cores through the Orange sand 
interval (~800-820 mbsf). No gas samples have yet 
been collected from quantitative degassing of the 
high-saturation intervals.

Overall, the gas composition of light  δ13C-CH4 and 
high C1/(C2+C3) is consistent with a mainly microbial 
source of methane with only very minor thermogenic 
components. Future gas chemistry analyses will be 
necessary to determine the specific methanogenesis 
pathways, possible secondary methane generation, or 
the possible presence of microbial ethane.
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Figure F27: Concentration of methane, methane hydrate saturation, total organic carbon, carbon isotopes of methane, and porosity.  
A) Measured depth in meters below seafloor (mbsf); B) Lithofacies; C) Methane concentration expressed as a function of the maximum 
solubility of methane in pore water; D) Hydrate saturation; E) Total organic carbon (TOC). The decrease in TOC as highlighted by the 
dash blue line (logarithmic fit) reflects microbial consumption of TOC; F) δ13C isotopes of CH4 reported relative to the Vienna Pee Dee 
Belemnite (VPDB) standard; G) Projected LWD porosity derived from LWD density. The derivation is discussed in Site H: Seismic and 
LWD interpretation. The depth projection of LWD data onto Hole H002 and Hole H003 is discussed in Site H (Flemings et al., 2025a). 
All depths are compressed measured depth in meters below the seafloor (mbsf).  Methods and further discussion of geochemistry and 
index properties can be found in Methods (Flemings et al., 2025b) and Site H (Flemings et al., 2025a).
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Figure F28: Carbon isotopes of methane (δ13C) and molecular ratios for void, pressure core, and hydrate gas samples from Site H. 
A) δ13C-CH4 measured post-expedition using a Cavity Ring-Down Spectrometer (CRDS) and reported concentrations are relative 
to  the Vienna Pee Dee Belemnite (VPDB) standard; B) Methane to ethane (C1/C2) measured post-expedition using higher-sensitivity 
gas chromatography with a Flame Ionization Detector (GC-FID); C) C1/(C2+C3) measured post-expedition using CRDS and GC-FID; D) 
C1/C2 measured onboard within hours of collection using gas chromatography with a thermal conductivity detector (GC-TCD); All 
depths are compressed measured depth in meters below the seafloor (mbsf). Methods and further discussion can be found in the gas 
geochemistry sections of Methods (Flemings et al., 2025b) and Site H (Flemings et al., 2025a).
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Summary
Expedition UT-GOM2-2 successfully drilled and cored from the seafloor to near the base of the hydrate stability 
zone more than 800 meters below the seafloor. Sampling spanned from the seafloor to the base of the hydrate 
stability zone. In the years ahead, analysis of the data acquired from this expedition will further illuminate the 
dynamics of the microbial factory that drives hydrate formation and provide insight into the potential of the gas 
hydrate reservoir as a future energy resource.

UT-GOM2-2 science party members enjoy the sunset while relaxing off shift on the Q4000 helipad. Photo credit: Geotek Ltd.
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