

AETHER

TDC-106 Lunar & Mars Surface Habitat Module Manufacturing

Introduction

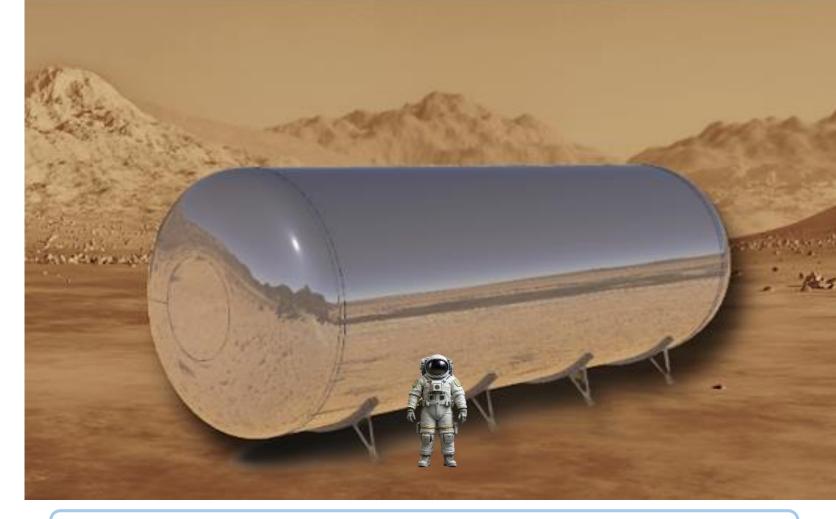
The objective is to develop a fully prefabricated Lunar and Martian surface habitat module, designed for rapid deployment and sustainability under NASA's Moon-to-Mars Architecture. The Aether Module leverages advanced manufacturing methods such as friction stir welding and modular aluminum-titanium structures to minimize on-site assembly, reduce mission risk, and support four astronauts for extended surface operations.

Background

The Humans to Mars Program aims to enable human habitation beyond Earth by the 2030s. Current extraterrestrial habitats lack manufacturing efficiency and depend heavily on on-site assembly. Aether addresses this challenge by designing a habitat that can be manufactured, configured, and pressurized on Earth, transported within the Falcon Heavy fairing, and deployed ready-for-use on the lunar or Martian surface.

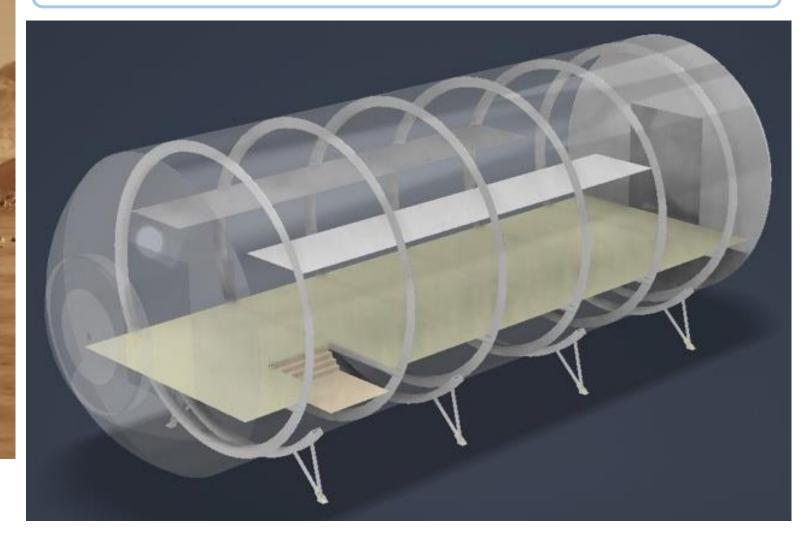
Objective

- Design and manufacture a pressure-sealed extraterrestrial habitat module capable of supporting four crew members.
- 2. Ensure dual-environment compatibility for Lunar and Martian missions.
- 3. Develop a module that is fully prefabricated on Earth and operational immediately upon deployment.

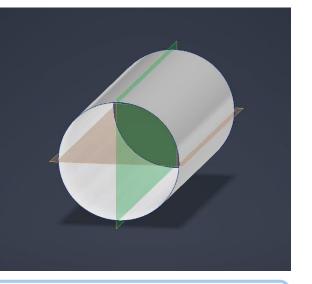

Specifications

Parameter	Description	Criteria		
Launch Mass	Maximum per module	≤ 10,000 kg		
Usable Interior Area	Floor area available	50–80 m ²		
Internal Pressure	Operational Cabin Pressure	70–101 kPa		
Temperature range	Surface Conditions	-130°C to 120°C		
Radiation Shielding	Crew Protection	≥10 g/cm²		
Crew Capacity	Habitants	4		
Assembly Time	Deployment and setup timeframe	≤ 30 days		
Corrosion Resistance	Material degradation	≤5% mass loss		

Abdelmalik Abuhalimeh, Alec Bell, Brandon Portillo, Eddie Hidalgo, Steven Alvarado

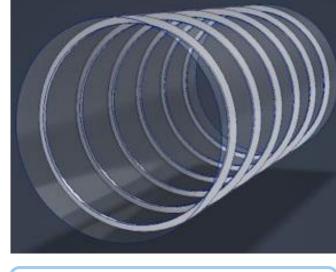

Department of Mechanical Engineering, University of Texas at Tyler - Houston Engineering Center, Houston, TX

Aether Module

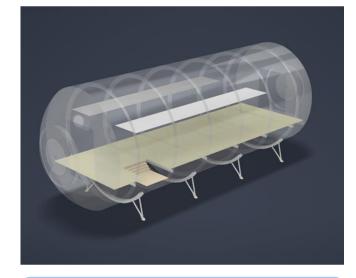


Aether Module Deployed on Mars

Aether Module Internal View

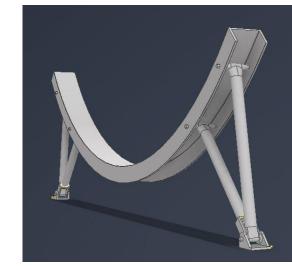


Habitat Module Main Components

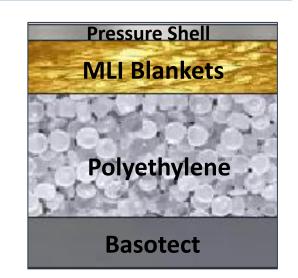

Pressure Shell

Al 2219 pressure hull encases the module, providing airtight corrosion resistant shell

Support Spine


Al 7050 ribbed spine spans the module, resisting hoop stress and transmitting loading forces to support beams and legs

Main Floor & Lofts


Lower level serves as primary workspace, with overhead lofts for bunking. Polypropylene construction aids with damping. Setup yields 50.4m² usable space.

Calculations

Leg-Saddles

Al 2216 saddles cradle
the module. Hollow
g. Ti 10-2-3 legs attach to
n foot pads and support
the saddles.

Wall Layers

Polyethylene and MLI blankets absorb radiation and provide thermal insulation. Basotect foam damps vibrations and reducing excess noise.

• **Modularity:** Enables multiple connected habitats using standardized airlocks.

Key Decisions

• Prefabrication: The module is fully manufactured on

• Launch Vehicle: SpaceX Falcon Heavy chosen for its

• Design Orientation: Horizontal, maximizing internal

that it can be immediately deployed on site.

proven Mars-reaching capability.

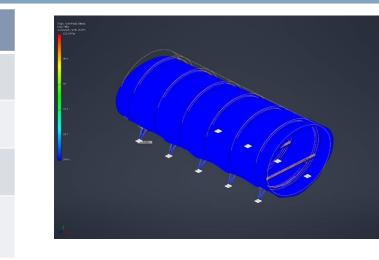
volume and stowage efficiency.

earth, and stows fully configured during transit, such

- Fabrication: Utilizes cold rolling and friction stir welding for strength and airtight integrity.
- **Materials:** Aerospace-grade aluminum alloys and titanium ensure high strength-to-weight performance.
- Thermal Control: Incorporates multilayer insulation and active radiators to maintain optimal internal temperature under Mars surface conditions.
- Radiation Protection: Incorporates layered shielding and strategic water storage placement to minimize crew exposure to cosmic and solar radiation.
- Structural Integrity: Reinforced with internal bulkheads and load-bearing frames to withstand launch stresses and surface pressure differentials on Mars.

Future Plans

Future work will focus on validating the Aether Habitat design through additional physical and simulated testing. Fabrication tests will confirm weld integrity, while thermal and impact assessments will ensure environmental durability. Once validated, a full-scale simulated prototype will be developed for NASA subsystem integration and field testing.


Acknowledgments

- Dr. Mohammad Biswas UT Tyler
- Robert Nuckols NASA Mentor
- Dr Tim Urban-NASA Texas Space Grant Consortium
- University of Texas at Tyler, College of Engineering

Component Section	Mass
Pressure Hull (Al-2219)	1800kg
Flooring and Supports (Floors, Spine, I beams, Leg Saddles)	617kg
Wall Layers (HDPE, MLI, Basotect)	2348kg

TOTAL Mass: 4765.32

Section	Area	
Main Floor	3.5 x 10 =35 m ²	
Loft 1	$7 \times 1.1 = 7.7 \text{ m}^2$	
Loft 2	$7 \times 1.1 = 7.7 \text{ m}^2$	
TOTAL AREA: 50.4 m ²		

FEA analysis validated the structural integrity under Lunar and Martian conditions with a safety margin >10.

References

[1] NASA. Moon to Mars Architecture – White Papers. 13 Dec. 2024, https://www.nasa.gov/moontomarsarchitecture-whitepapers. Accessed 6 Oct. 2025.

[2] NASA. Artemis. 25 Sept. 2023, https://www.nasa.gov/feature/artemis. Accessed 1 Oct. 2025. [3] SpaceX. Falcon Heavy. https://www.spacex.com/vehicles/falcon-heavy/. Accessed 24 Sep.

[3] Procurement Divisions and Offices. National Aeronautics and Space Administration, https://www.nasa.gov/reference/procurement-divisions-and-offices/. Accessed 8 Oct. 2025.

[4] National Aeronautics and Space Administration, NPR 7120.5, NASA Space Flight Program and Project Management Requirements. Rev. F. Washington, D.C.: NASA, 2021.

[5] Space Exploration Technologies Corp., Falcon Payload User's Guide, Version 8, Mar. 2025. [Online]. Available: https://www.spacex.com/media/Falcon Payload Users Guide.pdf